Function, Argument Type(s) & Return Type
|
Description
|
Example |
arrayToMatrix {type}, int, int Return Type: [type] |
Create a matrix from the specified array with the specified number of rows and columns. |
a = {1,2,3,4} x = arrayToMatrix(a,2,2) = [ 1, 2; 3, 4] |
conjugateTranspose [complex] Return Type: [complex] |
Return the conjugate transpose of the specified matrix. |
m1 = [1, 2; 3, 4] x = conjugateTranspose(m1) = [1.0+0.0i, 3.0+0.0i; 2.0+0.0i, 4.0+0.0i] |
createSequence type, type, int Return Type: {type} |
Create an array with values starting with the first argument, incremented by the second argument, of length given by the third argument. |
x = createSequence (3, 2, 4) = {3, 5, 7, 9} |
crop [int], int, int, int, int / [double], int, int, int, int / [complex], int, int, int, int / [long], int, int, int, int Return Type: [int] / [double] / [complex] / [long] |
Given a matrix of any type, return a submatrix starting at the specified row and column with the specified number of rows and columns. |
m1 = [ 1, 2, 3; 4, 5, 6; 7, 8, 9] x = crop(m1,0,1,2,1) = [2; 5] |
determinant [double] / [complex] Return Type: double / complex |
Return the determinant of the specified matrix. |
m1 = [2, 6, 3; 1, 3, 9; 7, 8, 4] x = determinant(m1) = 195.0 |
diag {type} Return Type: [type] |
Return a diagonal matrix with the values along the diagonal given by the specified array. |
diag (int) = [0] diag(long) = [0L] diag(double) = [0.0] |
divideElements [type], [type] Return Type: [type] |
Return the element-by-element division of two matrices. |
a = [1,0,0;0,1,0;0,0,1] b = [1,2,3;4,5,6;7,8,9] x = divideElements(a,b) = [1, 0, 0; 0, 0, 0; 0, 0, 0] |
find {type}, type Return Type: {int} |
Return an array of the indices where elements of the specified array match the specified token. |
Array = {1,2,3,4,2,6,7} X = find(Array,2) = {1,4} |
find {boolean} Return Type: {int} |
Return an array of the indices where elements of the specified array have value true. |
Array = {false, true, false, false, true} X = find(Array) = {1,4} |
find {type}, type, int Return Type: {int} |
Return an array of the indices where elements of the specified array match the specified token and starts from the index (int). |
Array = {false,true,false,true,false} X = find(Array,false,2) = {2,4,0} |
hilbert int Return Type: {double} |
Return a square Hilbert matrix, where. A Hilbert matrix is nearly, but not quite singular. |
hilbert(2) = [1.0, 0.5; 0.5, 0.33] |
identityMatrixComplex int Return Type: {complex} |
Return an identity matrix with the specified dimension. |
identityMatrixComplex(2) = [1.0 + 0.0i, 0.0 + 0.0i; 0.0 + 0.0i, 1.0 + 0.0i ] |
identityMatrixDouble int Return Type: [double] |
Return an identity matrix with the specified dimension. |
identityMatrixDouble(2) = [1.0, 0.0; 0.0, 1.0] |
identityMatrixInt int Return Type: {int} |
Return an identity matrix with the specified dimension. |
identityMatrixInt(2) = [1, 0; 0, 1] |
identityMatrixLong int Return Type: [long] |
Return an identity matrix with the specified dimension. |
identityMatrixLong(2) = [1L, 0L; 0L, 1L] |
intersect data structure, data structure Return Type: data structure |
Return a data structure that contains only fields that are present in both arguments, where the value of the field is taken from the first data structure. |
a = {src = "s1",des = "d1", priority = 1} b = {src = "s2",des = "d1", priority = 2,msg = "Hi"} x = intersect(a,b) = {des = "d1", priority = 1, src = "s1"} |
inverse {double] / [complex] Return Type: [double] / [complex] |
Return the inverse of the specified matrix, or throw an exception if it is singular. |
m1 = [2,6,3;1,3,9;7,8,4] inverse(m1) = [-0.3, -0.0, 0.23; 0.3, -0.067, -0.07; -0.06, 0.13, 6.9E-18] |
matrixToArray [type] Return Type: {type} |
Create an array containing the values in the matrix. |
a1 = [1, 2, 3; 4, 5, 6; 7, 8, 9] matrixToArray(a1) = {1, 2, 3, 4, 5, 6, 7, 8, 9} |
merge data structure, data structure Return Type: data structure |
Merge two data structures, giving priority to the first one when they have matching data structure labels. |
a = {src = "s1",dest = "d1",priority = 1} b = {src = "s2",dest = "d1",priority = 2, msg = "hi"} x = merge(a,b) = {src = "s1",dest = "d1",priority = 1,msg = "hi"}
|
multiplyElements [type], [type] Return Type: [type] |
Multiply element wise the two specified matrices. |
a = [1,0,0;0,1,0;0,0,1] b = [1,2,3;4,5,6;7,8,9] multiplyElements(a,b) = [1, 0, 0; 0, 5, 0; 0, 0, 9] |
OrthogonalizeColumns [double] / [complex] Return Type: [double] / [complex] |
Return a similar matrix with orthogonal columns. |
a = [1.0,2.0;3.0,4.0] x = orthogonalizeColumns(a) = [1.0, 0.59; 3.0, -0.2] |
orthogonalizeRows [double] / [complex] Return Type: [double] / [complex] |
Return a similar matrix with orthogonal rows. |
a = [1.0,2.0;3.0,4.0] x = orthogonalizeRows(a) = [1.0, 2.0; 0.79, -0.4] |
OrthonormalizeColumns [double] / [complex] Return Type: [double] / [complex] |
Return a similar matrix with orthonormal columns. |
a = [1.0,2.0;5.0,6.0] x = orthonormalizeColumns(a) = [1.0, 0.76; 5.0, -0.15] |
orthonormalizeRows [double] / [complex] Return Type: [double] / [complex] |
Return a similar matrix with orthonormal rows. |
a = [1.0,2.0;5.0,6.0] x = orthonormalizeRows(a) = [0.44, 0.89; 0.89, -0.44] |
repeat int, type Return Type: {type} |
Create an array by repeating the specified token the specified number of times. |
a = {1, 2, 3, 4} x = repeat(a,2) = {{2},{2,2},{2,2,2}, {2,2,2,2}} |
sort {string}/ {realScalar} Return Type: {string} / {realScalar} |
Return the specified array, but sorted in ascending order. realScalar is any scalar token except complex. |
a = {5.0, 2.0, 8.0, 4.0} x = a.sort() = {2.0, 4.0, 5.0, 8.0} |
sortAscending {string}/{realScalar} Return Type: {string} / {realScalar} |
Return the specified array, but sorted in ascending order. realScalar is any scalar token except complex. |
a = {6, 4, 7, 9, 2, 1, 5, 3} x = sortAscending(a) = {1, 2, 3, 4, 5, 6, 7, 9} |
sortDescending {string}/ {realScalar} Return Type: {string} / {realScalar} |
Return the specified array, but sorted in descending order. realScalar is any scalar token except complex. |
a = {6, 4, 7, 9, 2, 1, 5, 3} x = sortDescending(a) = {9, 7, 6, 5, 4, 3, 2, 1} |
Subarray {type}, int, int Return Type: {type} |
Extract a subarray starting at the specified index with the specified length. |
a = {1,2,3,4,5,6,7,8,9} x = subarray(a,2,4) = {3, 4, 5, 6} |
sum {type} / [type] Return Type: type |
Sum the elements of the specified array / matrix. This throws an exception if the elements do not support addition or if the array is empty (an empty matrix will return zero). |
a = [1, 2, 3; 4, 5, 6; 7, 8, 9] x = sum(a) = 45 |
trace [type] Return Type: type |
Return the trace of the specified matrix. |
a = [1,2;5,6] x = trace(a) = 7 |
transpose [type] Return Type: [type] |
Return the transpose of the specified matrix. |
a = [1,2,3; 4,5,6; 7,8,9] x = transpose(a) = [1, 4, 7; 2, 5, 8; 3, 6, 9] |
zeroMatrixComplex int, int Return Type: [complex] |
Return a zero matrix with the specified number of rows and columns. |
zeroMatrixComplex(2,2) = [0.0 + 0.0i, 0.0 + 0.0i; 0.0 + 0.0i, 0.0 + 0.0i] |
zeroMatrixDouble int, int Return Type: [double] |
Return a zero matrix with the specified number of rows and columns. |
zeroMatrixDouble(2,2) = [0.0, 0.0; 0.0, 0.0] |
zeroMatrixInt int, int Return Type: [int] |
Return a zero matrix with the specified number of rows and columns. |
zeroMatrixInt(2,2) = [0, 0; 0, 0] |
zeroMatrixLong int, int Return Type: [long] |
Return a zero matrix with the specified number of rows and columns. |
zeroMatrixLong(2,2) = [0L, 0L; 0L, 0L] |
Created with the Personal Edition of HelpNDoc: Free iPhone documentation generator