
  VisualSim Architect 
  Aerospace 
 

Avionics and Space Applications- A White Paper Page 1 June 26, 2018 

System-level modeling and simulation software  
 
Key Features 
-Validate and optimize the system design of electronics and timing-critical software  
-Analyze across the three axes of function, timing and energy using dynamic models 
-Construct large, complex systems using extensible library of modeling components 
-Utilize the single environment for system design, functional validation and in-field debugging 
-Export documentation from model content and simulate in a Web Browser 
  
VisualSim Aerospace and Avionics solution 
encompasses a large library of parameterized 
modeling components, analysis tools and an 
extensive list of Application templates.  Using 
these elements in the graphical VisualSim 
Architect modeling environment, engineers can 
assemble models of their radars, 
communications, navigation and avionics 
system, run Monte-Carlo simulation and 
generate reports that are used to optimize the 
product architecture. 
 
Mirabilis Design is a Silicon Valley software 
company providing architecture simulation 
solutions for the exploration of large distributed 
electronic systems, semiconductor and timing-
critical software.  Mirabilis Design empowers 
design teams to create the right product using 
early architecture studies and analysis. Our 
product, VisualSim, is a modeling and 
simulation package that accelerates 
architecture exploration and enables the 
designer to create a product specification that 
meets the requirements.   
 
The Next generation Bus specification team at 
NASA said, “Early results from in-house 
modeling activity of Serial Rapid IO using 
VisualSim indicate that the use of a switched, 
high-performance avionics network will provide 
a quantum leap in spacecraft onboard science 
and autonomy capability for science and 
exploration missions.” 

Using this modeling environment, users can 
assemble models of their proposed or existing 
systems.  The designers can run simulations and 
conduct power, performance and functional 
analysis.  Over 55 companies in Japan, US, China 
and India use VisualSim.  Fully-trained technical 
experts are available in US, Korea, China and 
India to provide application and modeling 
support for our users.   
 
VisualSim Architect is a modeling and 
simulation environment for system-level design 
of avionics sub-system, system interconnect, 
multi-board hardware and time-critical 
software.  Using the pre-built parameterized 
library components, product development 
teams assemble sophisticated models of the 
proposed system or a concept, and conduct 
trade studies for a variety of requirements and 
budget constraints.  The functional 
requirements are achieved with the constraints 
on timing, power, weight, and reliability.   
 
VisualSim Architect has a well-proven 
methodology to facilitate design space 
validation.  Based on the experience working 
with many large programs in the aerospace and 
avionics space, we have developed a step-by-
step design process.    Depending on your 
organization, location in the project schedule 
and type of design intent, the user may adopt 
one or more of the below methodology steps. 
 



  VisualSim Architect 
  Aerospace 
 

Avionics and Space Applications- A White Paper Page 2 June 26, 2018 

1. Blueprint: A blueprint is created to identify 
the communications between all possible 
inputs and outputs, the sequence of actions 
in each flow, branch points and, anticipated 
delays for processing the task and retrieving 
data.  Every system will have a series of 
periodic tasks such as a Sensor input, gyro 
or a software task, interspersed with 
aperiodic or non-predictable requests that 
are for data, events or other task 
completions.   
 
The model will consist of traffic generators 
for inputs, sinks and plotters for the outputs 
and a set of expression, delays and 
schedulers for the system.  This model is 
the foundation of the entire design process 
and can be used for multiple applications.  
The first is to identify the points of failure 
that can cause instant and delayed system 
malfunction.   
 
The output provides the requirements for 
the development of redundancy systems 
and fault-tolerant handshaking 
mechanisms.  Faults are injected into the 
system while it is in operation to measure 
the impact in each flow. Example of system 
faults include connector breaks, network 
node failure, incorrect data value, delayed 
data response, network congestion and 
timing jitters in task execution.  

  
2. Traffic and General Analysis: This phase is 

used to optimize the system specification 
for lowest power consumption, detect 
errors caused by missing timing deadlines, 
impact of system faults, and create full 
system operation to debug problems in the 
field.  Traffic analysis studies the impact of 
variable data patterns on a protocol or an 
implementation.   
 

Synthetic traffic uses VisualSim libraries and 
real-life trace is from a prior or current 
system. The system will model the 
consequence of algorithm operation, delay 
for each algorithm task (high-level), and 
overhead activity, such as regular 
interrupts/RTOS querying/network 
requests.  These traffic models can be used 
to define new or enhanced protocols and 
evaluated for different operation scenarios, 
traffic activity, and faulty operation. 

 
3. Architecture exploration is the phase where 

the protocols are designed 
(MAC/Data/Transport layers, arbitration 
algorithms, flow management, etc.), study 
the data flow between sub-systems (check 
the sequence of operation, what happens 
when a sub-system fails, location of 
sensors, attenuators, mechanical 
subsystems, etc.), conduct hardware 
tradeoff (hardware component selection, 
etc.), software architecture selection (multi-
threaded, distribution across multi cores 
and processors), and hardware-software 
partitioning (selecting the implementation 
mechanism based on target performance).  

  
4. Hardware and Software Modeling: This is 

the architecture model that evaluates the 
detailed interaction between hardware and 
software.  This model has three purposes- 
to size the hardware, distribute tasks across 
multiple processors/cores, and hardware-
software partitioning.  Here you can look at 
the detailed timing interaction- for example 
a multiple stage 1553B interaction with a 
Ethernet or the Timed of the Day clock 
schedule tasks against a random/alarm-
driven execution.  The tasks can be 
modeled at the data value level to evaluate 
the impact of late arrivals, incorrect values, 
reliability and fault-tolerance.   

 



  VisualSim Architect 
  Aerospace 
 

Avionics and Space Applications- A White Paper Page 3 June 26, 2018 

5. Multi Domain Algorithm and Protocol 
Development: Every electro-mechanical 
system has control, analog, DSP and 
protocols.  First these algorithms must be 
designed to meet the strict functional, 
timing and power constraints.  There is a 
library of Regular Expressions, standard 
timing components, algorithm blocks, 
interfaces to network and multimedia 
devices, schedulers and queuing 
components that enable the assembly of 
these systems.  Initially the detailed 
algorithms need not be defined.  As more 
information becomes available, the details 
of the algorithm can be added to make the 
model have better fidelity and answer more 
implementation level details. 
  

6. Software validation:  Software validation is 
done after the code has been debugged.  
The system allows the user to validate the 

safety, timing and the functional 
correctness of the software.  Large systems 
have software on distributed terminals or 
nodes that interact across long, hierarchical 
and fast interfaces that make verification 
difficult without the assembled systems.   

 
The architecture models are used to 
conduct functional, timing, safety and 
reliability analysis in the face of 
unpredictable errors and sensitivity to 
timing delays.  This is critical when the 
result of one software task is needed by 
another periodic task, or when one task 
triggers another.  You can study the 
reaction of the software to injected faults 
and determine system reliability.  Examples 
of faults can be a link shutdown (Is there 
sufficient handshake to detect that the 
system must use an alternate path), 
memory value fault, and delayed sensor.

Summary 
System-level modeling and simulation for timing, power and functional analysis is a design validation 
and functional verification platform.  This platform can be used early in the design process and, 
complementary to physical efforts such as a prototype board and algorithmic simulation such as 
MatLab.  Analysis with VisualSim ensures the specification exceeds the requirement and operates at a 
satisfactorily level in failures and irregular operations.  The modeling process enables the designers to 
consider conditions that cannot be replicated in the physical prototype and other physically improbable 
failure situations.  Using this knowledge, designers can develop contingency plans and, provide 
redundant processing, establish handshakes, create watchdogs to detect failure conditions.  This will 
ensure a longer and safer product life. 


	System-level modeling and simulation software
	Summary

