
�EE Times-India | eetindia.com

By Deepak Shankar,
Mirabilis Design

DSP systems often include
multiple embedded processors
and hardware accelerators. The
performance of these systems is
typically limited by factors such
as I/O bandwidth, memory dis-
tribution, and memory speed.
This is particularly true when
the system components share a
memory interface. For such sys-
tems, it is critical to choose the
right memory controller.

Different memory controllers
offer latency distributions that
make them suitable for spe-
cific applications. For example, a
slot-based controller with fixed
priorities can offer deterministic
latencies, while buses such as
PCI-Express and CoreConnect of-
fer lower latency at peak loading
but higher average latency.

It is extremely difficult to
predict the performance of
the memory system and the
effect of contention without a
solid model of the system. It is
therefore important to invest
in modelling before beginning
development. This modelling
should include allocating of
threads/tasks to resources,
identifying any custom hard-
ware needs, and determining
the size and speed of the I/O.
The modelling can performed
using a number of methods,
including “back of the nap-
kin” calculations, spreadsheet
analysis, or by building a
physical prototype.

In this article, we examine
a unique “virtual prototyping”
approach to modelling. We use
this approach to model a MPEG
II application in a Xilinx FPGA.
We evaluate two memory
access schemes for this appli-
cation: the MPMC Memory
Controller from Xilinx, and the
CoreConnect Bus specification
for FPGAs.

Virtual Prototyping
The virtual prototyping approach
discussed in the article is based
on the VisualSim solution from
Mirabilis Design. VisualSim is a

graphical platform for analyzing
the performance of hardware
and software systems. It is based
on a library of parameterized
components including proces-

sors, memory controllers, DMA,
buses, switches and I/Os. Using
this library of building blocks, a
designer can construct a speci-
fication-level model of a system

Selecting memory controllers
for DSP systems

VIRTUAL PROTOTYPING

Figure 1: VisualSim model of the Xilinx Virtex 4 FX Platform: e405 with MPMC Memory Controller.

Figure 2: VisualSim model of the Xilinx Virtex 4 FX Platform: e405 with CoreConnect Bus Model.

http://www.eetindia.co.in

2 eetindia.com | EE Times-India

containing multiple processors,
memories, sensors and buses.
Model construction is a process of
connecting icons that represent
the IP in a graphical editor, as il-
lustrated in Figure 1.

Simulations can be explored
by varying parameters for the

input scenarios, data rates, priori-
ties, speed, or size. By analyzing
the simulation results, the de-
signer can choose the solution
that achieves the required latency
with the lowest power, smallest
fabric confi guration, and highest
system throughput.

Project Overview
This project evaluates the per-
formance of a MPEG II algorithm
implemented in C. The target
system is a Virtex-4 FX with up
to two hardwired PowerPC e405
cores connected to DDR2 SDRAM.

We evaluate two memory access
schemes for this application: The
Multi-Port Multi-Channel (MPMC)
Memory Controller and the
CoreConnect Bus.

The MPMC Memory
Controller (Figure 1) is a popular
option for this type of applica-
tion, as it provides an extremely
effi cient means of interfacing the
processor and key high speed de-
vices to SDRAM. The CoreConnect
Bus (Figure 2) is another popular
option. It supports multiple mas-
ters, including the PowerPC cach-
es and key high speed devices,
connected via a slave port to the
SDRAM. The preferred technique
depends on which approach will
provide the best performance in
terms of throughput, latency, and
processor effi ciency.

To investigate the similarities
and diff erences between the
two approaches, we constructed
models of both confi gurations
using VisualSim graphical model-
ling environment. The exploration
models did not require any soft-
ware coding. The designer only
needs to connect the diff erent
modelling elements, create the
right traffi c mix from the proces-
sor and high speed devices, and
select parameter settings that
match the anticipated design.

Design Considerations
The MPMC Memory Controller and
CoreConnect Bus are explored by
using the same confi guration. The
instruction and data channels
of the PowerPC e405, Ethernet
interface and PCI interface are
connected as Masters. The DDR2
SDRAM is a Slave. The Masters and
Slaves were all maintained at the
similar speed and size characteris-
tics in both the models. The design
considerations in this study are:

• What is driving the de-
sign—overall performance or
a combination of power and
performance?

• Do I need one or two e405
PowerPCs for my core tasks?

• If the e405 PowerPC is run-
ning at 400 MHz, then what
might be the best MPMC or
CoreConnect Bus clock ratio?

Figure 3: MPMC Memory Controller Arbitration Algorithm.

Figure 4: MPMC Memory Controller Activity with SDRAM at top.

Figure 5: CoreConnect Bus Activity with SDRAM at bottom.

�EE Times-India | eetindia.com

•	 Does my design have equal
read and write memory activ-
ity, more reads than writes, or
more writes than reads?

•	 What is the effect of the
SDRAM speed on the proces-
sor/memory controller/bus
clock ratio?

•	 What is the effect of the
SDRAM speed on added ap-
plication access to memory?

These design considerations
overlap and are interdependent,
making analysis complicated.
The ability to model concurrency
(that is, simultaneous events) in
a deterministic manner within
VisualSim allows for a consistent
comparison of the MPMC Memory
Controller and CoreConnect bus
configurations.

Our exploration looked at pro-
cessor stalls, cache hit-ratios, I/O
throughput and latency per task.
We modified a combination of
clock speed, controller width and
data loading rates to study the
performance. This article discuss-
es only the overall performance

of the design. For more details on
this design exploration or to view
the detailed modelling effort,
please contact the authors.

System Setup
The analysis was using the em-
bedded solution on a Xilinx Virtex
4 FX. The system was modelled as
follows.

PowerPC:
The PowerPC e405 core executed
at 400MHz and the external
SDRAM ran at 200MHz. For this
analysis, we used a 200MHz DDR2
memory controller to interface to
the SDRAM. The PCI received data
at 33 MHz while the Ethernet ran
at 100Mbps. The PCI stimulus was
received at constant rate while the
Ethernet received data every 2 ms
in bursts of 4 packets of 256 bytes.
The external SDRAM was 1GB and
had 32 transaction-level FIFO buf-
fers.

Floating-point co-processor
We used the Xilinx APU/FCM
floating-point co-processor for

this benchmark. The co-processor
was needed due to the vector-
oriented, heavy DSP nature of the
workload. The APU ran at 400MHz
to match the PowerPC pipeline
speed. The PowerPC pipeline
handled the instruction and data
pre-fetch, and the APU simply ex-
ecuted the decoded instruction.
Memory access from the APU was
performed through PowerPC bus
interfaces.

DMA: The PowerPC accessed
memory using a direct memory
call, while the PCI and Ethernet
accessed memory using DMA.
(The Ethernet and PCI have a
lightweight DMA engine with a
dedicated channel.) This was es-
sential to fragment the incoming
data and to prevent the network
traffic from causing a bottleneck
at the memory controller. To
minimize the impact of instruc-
tion cache misses, software
processing was triggered after 4
bursts of data from the Ethernet
were saved in the SDRAM and
the DMA triggered an interrupt
in the processor.

Application software: There
are a total of 33 unique DSP tasks
in the application. The tasks run-
ning on the processor include:
DFT, CS_Weighting, IR, and
Q_Taylor_Weighting. These tasks
are executed multiple times, and
each loop has variable counts
based on the size, depth and res-
olution of the incoming image.

MPMC Memory Controller
The MPMC Memory Controller ar-
bitrates to SDRAM in a predictable
fashion. As shown in Figure 3, the
controller algorithm gives prefer-
ence to the Processor Instruction
(P0) and Data (P1) cache accesses
for certain cycles, and secondary
preference for application access
ports 2 (P2) and 3 (P3) if these
slots are already in use. Figure
4 illustrates the access patterns
observed for the MPMC Memory
Controller.

CoreConnect Bus:
The CoreConnect Bus arbitrates
from the master to slave port using
read, write, address and request
channels. The slave port was con-
nected directly to the SDRAM, and
the bus arbitration provided high
speed burst access to the SDRAM.
The read channel has a capacity
of 4 bursts and the write channel
has a capacity of 2 bursts. For this
benchmark, we used bursts of 16
bytes or two memory accesses of
8 bytes each. Figure 5 illustrates
the access patterns observed for
the CoreConnect Bus.

Analysis
The simulation ran on a 1.6 GHz
Microsoft Windows XP (SP2 and
Standard Edition) machine with
512 Mb of cache. We simulated
3.0ms of system execution. This
simulation took 67 seconds to
complete. The model was con-
structed in about 4 days using
standard elements in the VisualSim
library.

We simulated both 200 MHz
and 400 MHz clock rates for the
CoreConnect Bus and the MPMC
Memory Controller. (All other
model parameters were held
constant.) Using the 200MHz
MPMC, the end-to-end latency
for application was 87.190 us,

Table 1: Instruction and Data Cache Statistics.

http://www.eetindia.co.in

� eetindia.com | EE Times-India

while the 400MHz CoreConnect
achieved a latency of 86.42 us.
Both numbers met our real-time
threshold. All the discussion

below will be based on these
clock rates. We found that lower
CoreConnect clock rates did not
provide adequate performance.

We found that the MPMC
offered uniform latency cycles
for cache-to-SDRAM accesses
while CoreConnect had more
variable timing. The lowest cycle
count was achieved using the
CoreConnect but its average
count was significantly higher.
Table 1 shows the details of our
results.

For 25 of the 33 tasks, the
MPMC Memory Controller
finished its tasks faster than
the CoreConnect Bus. Some
tasks took significantly longer
time when running with the
CoreConnect bus. Table 2 shows
the details of our results.

As shown in Table 3, the mean
processor stall for the application
using both techniques was about
2.66%. While the average proces-
sor stall was 1.99% for the MPMC,
it was 1.96% for the CoreConnect
model. Unfortunately, the
CoreConnect had a peak stall of
19.64% and this caused the ex-
cessive latency for certain tasks.
This indicated that when the
CoreConnect was stalled, the im-
pact on the application latency
was higher than with the MPMC.
This also confirmed our finding
that the CoreConnect had a high-
er overall latency and processor
stalling percentage. Increasing
the network traffic did not cause
any noticeable increase in the
MPMC latency, but external traf-
fic increases did cause the overall
CoreConnect latency to increase.

The MPMC Memory
Controller had a significantly bet-
ter mean hit ratio for the instruc-
tion cache—94% vs. 18.84% for
the Core Connect Bus. At certain
times during the simulation,
CoreConnect did get to 94% hit-
ratio but the duration was very
short. This indicated that the
MPMC arbitrated SDRAM requests
better than the CoreConnect Bus.

Looking at the number of
threads (33) and the thread size
(1.8 KB on average), we see that
increasing the PowerPC caches to
64KB each would reduce SDRAM
latency and achieve 100% hit-ra-

tio for the instruction cache. The
maximum value is a worst case
estimate, based on cache access
activity with no prefetching or
considerations for looping in the
application code.

Summary
The MPMC achieves a better
SDRAM latency at almost half the
speed of the CoreConnect bus.
Moreover, the uniform cycle count
offered scalability in places where
the network traffic was more
volatile. Our recommendation is
to use MPMC if the lowest latency
is required at the lowest clock
rate and lowest power. In these
two models one can see that the
MPMC Memory Controller does
a better job of arbitrating cache
requests, resulting in better hit
ratios and throughput for similar
system conditions. Virtual proto-
types and performance modelling
allowed us to explore a number
of scenarios and clock configura-
tions. The statistics generated
provided us full visibility into the
operation of the FPGA design.
Moreover the use of the fully vali-
dated VisualSim FPGA Modelling
Toolkit components allowed us to
save time without compromising
overall accuracy. The toolkit has
advanced simulation technology
for FPGA system to make relative
comparisons between different
configurations.

References
	 IBM 64-Bit Processor Local Bus,

Architecture Specifications,
Version 3.5, SA-14-2534-01
FY 2001

	
	 Xilinx PLB Block RAM (BRAM)

Interface Controller (v1.00b),
DS420 October 25, 2005

	 Xilinx OPB Block RAM (BRAM)
Interface Controller, DS468
December 1, 2005

	
	 Xilinx MCH_OPB Synchronous

DRAM (SDRAM) Controller
(v1.00a), DS492 April 4, 2005

Table 2: Task latency in cycles for key tasks in the application benchmark software.

Table 3: Latency and Stall Activity Statistics.

http://www.eetindia.co.in

